Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 26
1.
Molecules ; 29(8)2024 Apr 11.
Article En | MEDLINE | ID: mdl-38675563

The purpose of this study was to characterize ethanol extracts from leaves and flowers of two ecotypes (PL-intended for industrial plantations and KC-intended for cut flowers) of Lavandula angustifolia Mill. The plant was cultivated in 2019 in southern Poland as part of a long-term research plan to develop new varieties resistant to difficult environmental conditions. The collected leaves and flowers were used to prepare ethanol extracts, which were then analyzed in terms of phytochemical composition and antioxidant, bactericidal, and fungicidal properties. Using UPLC techniques, 22 compounds belonging to phenolic acids and flavonoids were identified. UPLC test results indicated that ethanol extracts from leaves and flowers differ in phytochemical composition. Lower amounts of phenolic acids and flavonoids were identified in leaf extracts than in flower extracts. The predominant substances in the flower extracts were rosmarinic acid (829.68-1229.33 µg/g), ferulic acid glucoside III (810.97-980.55 µg/g), and ferulic acid glucoside II (789.30-885.06 µg/g). Ferulic acid glucoside II (3981.95-6561.19 µg/g), ferulic acid glucoside I (2349.46-5503.81 µg/g), and ferulic acid glucoside III (1303.84-2774.17 µg/g) contained the highest amounts in the ethanol extracts of the leaves. The following substances were present in the extracts in trace amounts or at low levels: apigenin, kaempferol, and caftaric acid. Leaf extracts of the PL ecotype quantitatively (µg/g) contained more phytochemicals than leaf extracts of the KC ecotype. The results obtained in this study indicate that antioxidant activity depends on the ecotype. Extracts from the PL ecotype have a better ability to eliminate free radicals than extracts from the KC ecotype. At the same time, it was found that the antioxidant activity (total phenolic content, ABTS•+, DPPH•, and FRAP) of PL ecotype leaf extracts was higher (24.49, 177.75, 164.88, and 89.10 µmol (TE)/g) than that determined in flower extracts (15.84, 125.05, 82.35, and 54.64 µmol (TE)/g). The test results confirmed that leaf and flower extracts, even at low concentrations (0.313-0.63%), significantly inhibit the growth of selected Gram-negative and Gram-positive bacteria and Candida yeasts. Inhibition of mold growth was observed at a dose extract of at least 1 mL/100 mL.


Antioxidants , Ecotype , Flowers , Lavandula , Phytochemicals , Plant Extracts , Plant Leaves , Phytochemicals/chemistry , Phytochemicals/pharmacology , Lavandula/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Flowers/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Microbial Sensitivity Tests , Flavonoids/chemistry , Flavonoids/analysis , Flavonoids/pharmacology , Chromatography, High Pressure Liquid
2.
Molecules ; 28(23)2023 Dec 01.
Article En | MEDLINE | ID: mdl-38067623

This study investigated the in vitro antioxidant and biological properties of ethanol extracts obtained from the fruits of the highbush cranberry. The produced extracts exhibited a high content of polyphenols (1041.9 mg 100 g d.m.-1) and a high antioxidant activity (2271.2 mg TE g 100 d.m.-1 using the DPPH method, 1781.5 mg TE g 100 d.m.-1 using the ABTS method), as well as a substantial amount of vitamin C (418.2 mg 100 g d.m.-1). These extracts also demonstrated significant in vitro biological activity. Studies conducted on the Saccharomyces cerevisiae cellular model revealed the strong antioxidant effects of the extract, attributed to a significant reduction in the levels of reactive oxygen species (ROS) within the cells, confirming the utility of the extracts in mitigating oxidative stress. Moreover, inhibitory properties were demonstrated against factors activating metabolic processes characteristic of inflammatory conditions. It was observed that the cranberry extract inhibits the activity of cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) non-selectively. Additionally, the extract was found to be a highly active inhibitor of acetylcholinesterase (AChE), potentially suggesting the applicability of this extract in the prevention of neurodegenerative diseases, including Alzheimer's disease.


Antioxidants , Vaccinium macrocarpon , Antioxidants/chemistry , Vaccinium macrocarpon/chemistry , Fruit/chemistry , Acetylcholinesterase , Plant Extracts/chemistry
3.
Molecules ; 28(17)2023 Sep 03.
Article En | MEDLINE | ID: mdl-37687245

Lavender is a valued plant due to its cosmetic, perfumery, culinary, and health benefits. A wide range of applications is related to the composition of bioactive compounds, the quantity and quality of which is determined by various internal and external factors, i.e., variety, morphological part of the plant, and climatic and soil conditions during vegetation. In the presented work, the characterization of antimicrobial properties as well as the qualitative and quantitative assessment of bioactive compounds in the form of polyphenols in ethanol extracts from leaves and flowers of Lavandula angustifolia Mill. intended for border hedges, cultivated in the region of southern Poland, were determined. The composition of the fraction of volatile substances and antioxidant properties were also assessed. The conducted research shows that extracts from leaves and flowers significantly affected the viability of bacterial cells and the development of mold fungi. A clear decrease in the viability of bacteria and C. albicans cells was shown in the concentration of 0.32% of extracts. Leaf extracts were characterized by a much higher content of polyphenols and antioxidant properties than flower extracts. The composition of volatiles measured by GC-MS was significantly different between the extracts. Linalyl acetate and ocimene isomers mix dominated in flower extracts, whereas coumarin, γ-cadinene, and 7-methoxycoumarin were identified as dominant in leaf extracts.


Anti-Infective Agents , Lavandula , Antioxidants/pharmacology , Poland , Anti-Infective Agents/pharmacology , Candida albicans , Plant Extracts/pharmacology
4.
Int J Mol Sci ; 24(18)2023 Sep 21.
Article En | MEDLINE | ID: mdl-37762704

Compost has a broad application in terms of the improvement of the soil properties. This research work was conducted to present the molecular implications of using compost obtained from different substrates to improve soil parameters for cucumber seedlings cultivation. In the experiment, the following compost mixtures were used: sewage sludge (80%) + sawdust (20%); sewage sludge (40%) + sawdust (10%) + biodegradable garden and park waste (50%); biodegradable garden and park waste (90%) + sawdust (10%); sewage sludge (80%) + sawdust (20%) + Eisenia fetida; sewage sludge (40%) + sawdust (10%) + biodegradable garden and park waste (50%) + Eisenia fetida; biodegradable garden and park waste (90%) + sawdust (10%) + Eisenia fetida. The final substrate compositions consisted of compost mixtures and deacidified peat(O) (pH 6.97; Corg content-55%, N content-2.3%), serving as a structural additive, in different mass ratios (mass %). The produced plants underwent biometric and physiological measurements as well as enzymatic analyses of stress markers. Based on the conducted studies, it has been found that the substrate productivity depends not only on the content of nutrient components but also on their structure, which is moderated by the proportion of peat in the substrate. The most effective and promising substrate for cucumber seedling production was variant 2 (I), which consisted of 25% compost from sewage sludge (40%) + sawdust (10%) + biodegradable garden and park waste (50%) and 75% deacidified peat. Despite the richness of the other substrates, inferior parameters of the produced seedlings were observed. The analysis of the enzymatic activity of stress markers showed that these substrates caused stress in the plants produced. The study's results showed that this stress was caused by the presence of Eisenia fetida, which damaged the developing root system of plants in the limited volume of substrate (production containers). The adverse influence of Eisenia fetida on the plants produced could possibly be eliminated by thermal treatment of the compost, although this could lead to significant changes in composition.


Composting , Cucumis sativus , Oligochaeta , Animals , Seedlings , Sewage , Soil
5.
Molecules ; 28(13)2023 Jun 27.
Article En | MEDLINE | ID: mdl-37446700

This paper presents the effects of irrigating barley plants with different type of water solutions saturated with gaseous ozone generated from atmospheric air. The study investigated the effects of the applied types of water on the modulation of the biosynthesis of selected bioactive compounds (content of total polyphenols, small molecule antioxidants, vitamin C) in the produced plant material. A number of transformations of reactive oxygen species (ROS) and nitrogen compounds have also been postulated; these are observed during the saturation of water with gaseous O3 and 30 min after the end of the process. It was shown that after the process of water saturation with gaseous O3, the gas later is converted to compounds with high oxidative potential and good stability; these, in turn, lead to the oxidation of oxidates generated from atmospheric nitrogen into nitrates, which exhibit fertilising properties. Thirty minutes after the process of H2O saturation with gaseous O3 was completed, the tests showed the highest concentrations of nitrates and the relatively high oxidative potential of the solution originating from H2O2 with a low concentration of the dissolved O3. This solution exhibited the highest activity modulating the biosynthesis of polyphenols, small molecule antioxidants and vitamin C in young barley plants. The resulting differences were significant, and they were reflected by 15% higher total polyphenol content, 35% higher antioxidative potential and 57% greater content of vitamin C compared to the control specimens (plants treated with fresh H2O).


Hordeum , Ozone , Antioxidants/pharmacology , Water , Hydrogen Peroxide , Nitrates , Ascorbic Acid , Ozone/pharmacology , Polyphenols , Plants
6.
Phytochemistry ; 213: 113766, 2023 Sep.
Article En | MEDLINE | ID: mdl-37343736

The increased activity of PARP enzymes is associated with a deficiency of NAD+, as well as with a loss of NADPH and ATP, and consequent deterioration of the redox state in fruits. In this study, we checked whether treatment with nicotinamide (NAM) would affect PARP-1 expression and NAD+ metabolism in strawberry fruit during storage. For this purpose, strawberry fruits were treated with 10 mM NAM and co-treated with NAM and UV-C, and then stored for 5 days at 4 °C. Research showed that nicotinamide contributes to reducing oxidative stress level by reducing PARP-1 mRNA gene expression and the protein level resulting in higher NAD+ availability, as well as improving energy metabolism and NADPH levels in fruits, regardless of whether they are exposed to UV-C. The above effects cause fruits treated with nicotinamide to be characterised by higher anti-radical activity, and a lower level of reactive oxygen species in the tissue.


Food Storage , Fragaria , Fruit , Niacinamide , Catalase , Crop Production/methods , Electron Transport Complex II , Food Storage/methods , Fragaria/drug effects , Fragaria/metabolism , Fragaria/radiation effects , Fruit/drug effects , Fruit/metabolism , Fruit/radiation effects , Gene Expression Regulation, Plant/drug effects , Gene Expression Regulation, Plant/radiation effects , NAD/metabolism , NADP/metabolism , Niacinamide/pharmacology , Oxidation-Reduction/drug effects , Oxidation-Reduction/radiation effects , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Reactive Oxygen Species/metabolism , RNA, Messenger , Superoxide Dismutase , Ultraviolet Rays
7.
J Chromatogr A ; 1693: 463877, 2023 Mar 29.
Article En | MEDLINE | ID: mdl-36854210

The phenomenon of partial separation of enantiomeric mixtures in achiral chromatography (ACh) has already been documented for a wide variety of chiral compounds. It is attributed to the so-called effect of self-disproportionation of enantiomers (SDE). However, quantitative description of the SDE mechanism underlying adsorption of enantiomers on achiral surfaces is still incomplete, which hinders the application of that technique for large-scale separations. In this study, a mechanistic model for description of retention behavior of SDE-phoric compounds in silica-based ACh has been developed along with a procedure for fast determination of the model parameters. The model assumes formation of associates of chiral molecules, which occurs due to homo and hetero-chiral interactions in the adsorbed phase. The ability of the model to reproduce band profiles was verified for enantiomeric mixtures of three structurally different chiral compounds.


Chromatography , Silicon Dioxide , Chromatography/methods , Stereoisomerism , Adsorption
8.
Molecules ; 27(21)2022 Oct 24.
Article En | MEDLINE | ID: mdl-36364021

Young barley plants are a good source of bioactive compounds. This paper presents the effects of gaseous O3 (trioxygen or ozone) on the biosynthesis of compounds, determining the antioxidant potential of young barley plants. The total content of polyphenols was determined along with their profile, as well as total antioxidant potential and vitamin C content. The highest contents of these compounds were identified in young barley plants exposed to gaseous O3. The main bioactive compound, representing polyphenols, determined in the examined raw materials was saponarin (isovitexin 7-O-glucoside). The induction of increased biosynthesis of these molecules was directly linked to the modification of the activity of selected enzymes. The increased polyphenol content resulted from the modified activities of polyphenol oxidase (PPO) and phenylalanine ammonia lyase (PAL). On the other hand, the oxidative effect of ozone on barley plants was reduced, owing to the modified activities of catalases (CAT), glutathione peroxidases (SOD) and guaiacol peroxidase (GPOX). Analysis of the results showed that by applying gaseous O3 at a dose of 50 ppm for 10 min, the contents of bioactive compounds can be maximised in a residue-free way by activating oxidative stress defence mechanisms.


Hordeum , Ozone , Antioxidants/pharmacology , Polyphenols/pharmacology , Phenylalanine Ammonia-Lyase , Ozone/pharmacology
9.
Int J Mol Sci ; 23(19)2022 Sep 22.
Article En | MEDLINE | ID: mdl-36232450

Fruits of Amelanchier alnifolia Nutt. ex M. Roem. (Nutt.) are a good source of bioactive compounds and vitamins. Due to the fact that the berries are a soft fruit, they require special procedures to increase their molecular and mechanical stability during cold storage. The study investigated the effects of ozone treatment applied cyclically (every 24 h) on selected chemical and mechanical parameters of saskatoon berries kept in storage. For this purpose, measurements were performed to assess changes in some molecular markers such as antioxidant potential, content of vitamin C, and total polyphenols, as well as microbial stress and maximum destructive force under uniaxial compression of samples. The effectiveness of the storage process was also assessed in relation to the conditions used by determining the proportion of fruit affected by diseases occurring in storage. The findings show that ozone treatment led to increased content of bioactive compounds at the initial stages of storage and resulted in decreased loss of water and bioactive compounds at the later stages. Ultimately, irrespective of the conditions applied during ozone treatment, it was observed that the growth of micro-organisms on the fruit surface was inhibited, and as a result, storage losses during the relevant period were significantly reduced.


Ozone , Rosaceae , Antioxidants/chemistry , Ascorbic Acid/analysis , Ascorbic Acid/pharmacology , Fruit/chemistry , Ozone/pharmacology , Polyphenols/analysis , Rosaceae/chemistry , Vitamins/analysis , Water/analysis
10.
Phytochemistry ; 203: 113393, 2022 Nov.
Article En | MEDLINE | ID: mdl-35998832

The major aim of this study was to check the effect of one-time ozonation on selected quality parameters and antioxidant status of Actinidia arguta fruit. For this purpose, A. arguta fruit was ozonated with gas at a concentration of 10 and 100 ppm, which was carried out successively for 5, 15 and 30 min. Next, the selected quality attributes, antioxidants level as well as NADPH and mitochondrial energy metabolism in mini-kiwi fruit after ozonation were analysed. Our research has shown that ozonation reduced the level of yeast and mould without affecting the content of soluble solids or acidity. In turn, ozonation clearly influenced the antioxidant activity and the redox status of the fruit. The ozonated fruit was characterised by a lower level of ROS due to the higher level of low molecular weight antioxidants, as well as the higher activity of superoxide dismutase and catalase. In addition, improved quality and antioxidant activity of the fruit were indirectly due to improved energy metabolism and NADPH level. The ozonated fruit showed a higher level of ATP, due to both higher activity of succinate dehydrogenase and higher availability of NADH. Moreover, the increased level of NAD+ and the activity of NAD+ kinase and glucose-6-phosphate dehydrogenase contributed to higher levels of NADPH in the fruit.


Actinidia , Ozone , Actinidia/chemistry , Adenosine Triphosphate/analysis , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Catalase/metabolism , Fruit/chemistry , Glucosephosphate Dehydrogenase/analysis , Glucosephosphate Dehydrogenase/metabolism , Glucosephosphate Dehydrogenase/pharmacology , NAD/metabolism , NADP/analysis , NADP/metabolism , NADP/pharmacology , Ozone/analysis , Ozone/metabolism , Ozone/pharmacology , Reactive Oxygen Species/metabolism , Succinate Dehydrogenase/analysis , Succinate Dehydrogenase/metabolism , Succinate Dehydrogenase/pharmacology , Superoxide Dismutase/metabolism
11.
J Biotechnol ; 357: 84-91, 2022 Sep 20.
Article En | MEDLINE | ID: mdl-35985517

In this study, the effect of ozonation process on the poly(ADP-ribose) polymerase 1 gene expression (PARP-1) and related the NADPH metabolism in strawberry fruit during storage was determined. Our results showed that ozonation with gas at both 10 and 100 ppm concentrations increased the expression of PARP-1 in the fruit during storage. Furthermore, the ozonation process initially increased the level of NAD+ and NADH in the fruit, which corresponds to a higher ATP level. The storage of the fruit in an ozone atmosphere also contributed to increased activity of the NAD+ kinase, leading to increased levels of NADP+ . In turn, the higher activity of glucose-6-phosphate dehydrogenase caused the ozonated fruit to show a higher level of NADPH. However, as the storage period extended and thus with increasing expression of PARP-1 in the ozonated fruit, the level of NAD+ decreased. In general, the ozonated fruit, which had a higher level of NADPH, showed a higher content of reduced glutathione, which in turn contributed to an increase in the antioxidant activity of the fruit and, ultimately, to a lower accumulation of reactive oxygen species.


Fragaria , Ozone , Fragaria/metabolism , Fruit/metabolism , NAD/metabolism , NADP/metabolism , Ozone/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/metabolism
12.
Molecules ; 27(14)2022 Jul 16.
Article En | MEDLINE | ID: mdl-35889416

Research into the suitability of domestic raw materials, including, for example, new wheat cultivars and fruit additives for the production of flavoured beers, is increasingly being undertaken by minibreweries and craft breweries. The fruits of the Saskatoon berry are an important source of bioactive compounds, mainly polyphenols, but also macro- and microelements. The fruits of two Canadian cultivars of this species, 'Honeywood' and 'Thiessen', were used in this study. Physicochemical analysis showed that wheat beers with the addition of non-ozonated fruit were characterised by a higher ethanol content by 7.73% on average. On the other hand, enrichment of the beer product with fruit pulp obtained from the cv. 'Thiessen' had a positive effect on the degree of real attenuation and the polyphenol profile. Sensory evaluation of the beer product showed that wheat beers with the addition of 'Honeywood' fruit were characterised by the most balanced taste and aroma. On the basis of the conducted research, it can be concluded that fruits of both cvs. 'Honeywood' and 'Thiessen' can be used in the production of wheat beers, but the fermentation process has to be modified in order to obtain a higher yield of the fruit beer product.


Fruit , Rosaceae , Antioxidants/chemistry , Beer/analysis , Canada , Fruit/chemistry , Polyphenols/chemistry , Rosaceae/chemistry , Triticum
13.
Antioxidants (Basel) ; 11(5)2022 Apr 22.
Article En | MEDLINE | ID: mdl-35624685

The major aim of this study was to check whether a cyclic ozonation process will affect the preservation of the texture of strawberries stored at room temperature. Strawberry fruit was stored for 3 days at room temperature and ozonated with gaseous ozone at a concentration of 10 and 100 ppm for 30 min, every 12 h of storage. Research showed that the ozonation process inhibited the texture deterioration of the fruit during storage. The positive effect of ozone was directly related to the inhibition of the activity of enzymes involved in the degradation of the fruit cell walls, as well as indirectly from the improved energy metabolism of the fruit. The higher level of energy charge corresponded to the higher resistance of ozonated fruit to abiotic stress, leading to the maintenance of the integrity of cell membranes and, consequently, to maintaining good hardness of the fruit throughout the storage period.

14.
Int J Mol Sci ; 23(7)2022 Mar 22.
Article En | MEDLINE | ID: mdl-35408795

Flame retardants have attracted growing environmental concern. Recently, an increasing number of studies have been conducted worldwide to investigate flame-retardant sources, environmental distribution, living organisms' exposure, and toxicity. The presented studies include the degradation of 4,4'-isopropylidenebis(2,6-dibromophenol) (TBBPA) by ozonolysis and photocatalysis. In the photocatalytic process, nano- and micro-magnetite (n-Fe3O4 and µ-Fe3O4) are used as a catalyst. Monitoring of TBBPA decay in the photocatalysis and ozonolysis showed photocatalysis to be more effective. Significant removal of TBBPA was achieved within 10 min in photocatalysis (ca. 90%), while for ozonation, a comparable effect was observed within 70 min. To determine the best method of TBBPA degradation concentration on COD and TOC, the removals were examined. The highest oxidation state was obtained for photocatalysis on µ-Fe3O4, whereas for n-Fe3O4 and ozonolysis, the COD/TOC ratio was lower. Acute toxicity results show noticeable differences in the toxicity of TBBPA and its degradation products to Artemia franciscana and Thamnocephalus platyurus. The EC50 values indicate that TBBPA degradation products were toxic to harmful, whereas the TBPPA and post-reaction mixtures were toxic to the invertebrate species tested. The best efficiency in the removal and degradation of TBBPA was in the photocatalysis process on µ-Fe3O4 (reaction system 1). The examined crustaceans can be used as a sensitive test for acute toxicity evaluation.


Flame Retardants , Ozone , Polybrominated Biphenyls , Disinfection , Ferrosoferric Oxide/toxicity , Flame Retardants/toxicity , Phenols , Polybrominated Biphenyls/toxicity
15.
Cells ; 11(7)2022 03 28.
Article En | MEDLINE | ID: mdl-35406704

Salt stress is one of the main stressors limiting plant growth and yield. As a result of salt stress, unfavorable changes in the photosynthesis process take place, leading to a decrease in plant productivity. Therefore, it is necessary to use biologically active substances that reduce the effects of this stress. An example of such a substance is quercetin, classified as a flavonoid, which plays an important role in alleviating the effects of salt stress, mainly by the inactivation of reactive oxygen species (ROS) and by improvement of the photosynthesis process. A study was made of the effect of the quercetin-copper complex (Q-Cu (II)), which has a stronger antioxidant effect than pure quercetin. By means of a pot experiment, the influence of solutions of the Q-Cu (II) complex (100 mg∙L-1 [Q1], 500 mg∙L-1 [Q2] and 1000 mg∙L-1 [Q3]) on the physiological and biochemical processes occurring in wheat plants subjected to salt stress was investigated. The plants were given two sprays of Q-Cu (II) solution, and their physiological parameters were examined both 1 and 7 days after each application of this solution. The level of ROS and the activity of antioxidant enzymes (catalase [CAT], superoxide dismutase [SOD] and guaiacol peroxidase [GPOX]) were also determined. It has been shown that spraying with Q2 and Q3 solutions improves the chlorophyll content, the values of chlorophyll fluorescence parameters (the photochemical efficiency of PS II [Fv/Fm], the maximum quantum yield of primary photochemistry [Fv/F0], and the performance index of PS II [PI]), and gas exchange (net photosynthetic rate [Pn], stomatal conductance [gs], transpiration rate [E] and intercellular CO2 concentration [Ci]). As a result of the application of Q2 and Q3 solutions, the level of ROS and the activity of the antioxidant enzymes tested decreased, which means that these concentrations are most effective in counteracting the effects of salt stress.


Quercetin , Triticum , Antioxidants/metabolism , Antioxidants/pharmacology , Chlorophyll/pharmacology , Copper/pharmacology , Photosynthesis , Quercetin/pharmacology , Reactive Oxygen Species
16.
Molecules ; 28(1)2022 Dec 23.
Article En | MEDLINE | ID: mdl-36615315

Raspberry fruits are a valuable source of bioactive compounds. The study used the modification of the substrate (coconut fibre), consisting of the use of various organic and mineral additives, in the soilless cultivation of raspberries. The additives influenced the biosynthesis of bioactive compounds in the raspberry fruits by modifying the sorption properties and the abundance of the substrate. The influence of the additives on the content of polyphenols was determined as well as their profile (UPLC-MS), antioxidant potential (ABTS), vitamin C content, and the activity of selected enzymes that are markers of stress and resistance to abiotic factors. In the study, a significant effect of these additives was observed on the biosynthesis of polyphenols in raspberry fruit. The highest increase in the content of these compounds in relation to the control sample (substrate-100% coconut fibre), namely 37.7%, was recorded in the case of fruit produced on coconut substrate enriched with sheep wool. These fruits were also characterised by a significantly different profile of these compounds. These changes were caused by readily available ammonium nitrogen and free amino acids in the decomposition of proteins contained in the sheep wool. This was confirmed by the recorded content of chlorophyll SPAD in the plant leaves and the activity of selected enzymes, which proves a low level of stress and good condition of the plants.


Rubus , Rubus/chemistry , Fruit/chemistry , Chromatography, Liquid , Tandem Mass Spectrometry , Polyphenols/analysis , Antioxidants/analysis
17.
Molecules ; 26(18)2021 Sep 13.
Article En | MEDLINE | ID: mdl-34577018

Elderflowers are a well-known source of bioactive compounds. The amount of isolated bioactive compounds may be increased by applying various abiotic and biotic factors. Gaseous ozone (10 and 100 ppm) was used in the process of preparing flowers. Next, the flowers were treated with sugar syrup to extract bioactive compounds. It was shown that this treatment, including the influence of extraction temperature, significantly affects the contents of polyphenols (liquid chromatography-mass spectrometry (LC-MS) methods) and vitamin C, as well as the antioxidant potential (cupric reducing antioxidant capacity (CUPRAC method)), the profile of volatile substances (head space-solid-phase microextraction (HS-SPME methods)) and the colour of the syrup (Commission Internationale de l'Eclairage (CIE) L*a*b* methods). The findings show that an increased dose of ozone and higher extraction temperature applied in the process of syrup production resulted in higher contents and different compositions of bioactive compounds. The highest contents of bioactive compounds were identified in syrup obtained from raw material treated with ozone for 15 min (concentration = 10 ppm) and extraction with sugar syrup at a temperature of 60 °C.


Ozone , Phytochemicals , Sambucus nigra , Antioxidants , Flowers
18.
Int J Mol Sci ; 22(13)2021 Jun 26.
Article En | MEDLINE | ID: mdl-34206953

Quercetin, classified as a flavonoid, is a strong antioxidant that plays a significant role in the regulation of physiological processes in plants, which is particularly important in the case of biotic and abiotic stresses. The study investigated the effect of the use of potassium quercetin solutions in various concentrations (0.5%, 1.0%, 3.0% and 5.0%) on the physiological and biochemical properties of wheat seedlings. A pot experiment was carried out in order to determine the most beneficial dose of this flavonoid acting as a bio-stimulant for wheat plants. Spraying with quercetin derivative solutions was performed twice, and physiological measurements (chlorophyll content and fluorescence as well as gas exchange) were carried out on the first and seventh days after each application. The total phenolic compounds content and the total antioxidant capacity were also determined. It was shown that the concentrations of potassium quercetin applied have a stimulating effect on the course of physiological processes. In the case of most of the tested physiological parameters (chlorophyll content and fluorescence and gas exchange) and the total antioxidant capacity, no significant differences were observed in their increase as a result of application with concentrations of 3.0 and 5.0%. Therefore, the beneficial effect of quercetin on the analysed parameters is already observed when spraying with a concentration of 3.0%.


Antioxidants/pharmacology , Quercetin/pharmacology , Triticum/drug effects , Chlorophyll/metabolism , Crop Production/methods , Flavonoids/metabolism , Photosynthesis , Quercetin/analogs & derivatives , Seedlings/drug effects , Seedlings/metabolism , Seedlings/physiology , Triticum/growth & development , Triticum/metabolism
19.
Int J Mol Sci ; 22(14)2021 Jul 09.
Article En | MEDLINE | ID: mdl-34299004

Plant production technologies based solely on the improvement of plants themselves face obstacles resulting from the natural limitations of the biological potential of varieties. Therefore, new substances are sought that positively influence the growth and development of plants and increase resistance to various biotic and abiotic stresses, which also translates into an increase in obtained yields. The exogenous application of various phytoprotectants shows great promise in terms of cost effectiveness compared to traditional breeding methods or transgenic approaches in relation to increasing plant tolerance to abiotic stresses. Quercetin is a strong antioxidant among phenolic compounds, and it plays a physiological and biochemical role in plants. As such, the aim of this research was to assess the effect of an aqueous solution of a quercetin derivative with potassium, applied in various concentrations (0.5%, 1.0%, 3.0% and 5.0%), on the efficiency of the photosynthetic apparatus and biochemical properties of maize. Among the tested variants, compared to the control, the most stimulating effect on the course of physiological processes (PN, gs, ci, CCI, Fv/Fm, Fv/F0, PI) in maize leaves was found in 3.0 and 5.0% aqueous solutions of the quercetin derivative. The highest total antioxidant capacity and total content of polyphenolic compounds were found for plants sprayed with 5.0% quercetin derivative solution; therefore, in this study, the optimal concentration could not be clearly selected.


Antioxidants/pharmacology , Plant Breeding/methods , Potassium/chemistry , Quercetin/pharmacology , Stress, Physiological/drug effects , Zea mays/drug effects , Antioxidants/administration & dosage , Antioxidants/chemistry , Chlorophyll/analysis , Chlorophyll/chemistry , Fluorescence , Phenols/analysis , Plant Leaves/chemistry , Plant Leaves/drug effects , Plant Leaves/physiology , Quercetin/administration & dosage , Quercetin/analogs & derivatives , Quercetin/chemistry , Zea mays/growth & development , Zea mays/physiology
20.
Plants (Basel) ; 10(5)2021 Apr 22.
Article En | MEDLINE | ID: mdl-33922199

The aim of this research was to show the effect of the ozonation process on the quality of sea buckthorn (Hippophae rhamnoides L.). The quality of the ozonated berries of sea buckthorn was assessed. Prior to and after the ozone treatment, a number of parameters, including the mechanical properties, moisture content, microbial load, content of bioactive compounds, and composition of volatile compounds, were determined. The influence of the ozonation process on the composition of volatile compounds and mechanical properties was demonstrated. The ozonation had negligible impact on the weight and moisture of the samples immediately following the treatment. Significant differences in water content were recorded after 7 days of storage. It was shown that the highest dose of ozone (concentration and process time) amounting to 100 ppm for 30 min significantly reduced the water loss. The microbiological analyses showed the effect of ozone on the total count of aerobic bacteria, yeast, and mold. The applied process conditions resulted in the reduction of the number of aerobic bacteria colonies by 3 log cfu g-1 compared to the control (non-ozonated) sample, whereas the number of yeast and mold colonies decreased by 1 log cfu g-1 after the application of 100 ppm ozone gas for 30 min. As a consequence, ozone treatment enhanced the plant quality and extended plant's storage life.

...